Evaluation of Global soil moisture products over the Tibetan Plateau in Humid and Semiarid Climates

Volume 6, Issue 3, June 2022     |     PP. 69-81      |     PDF (1451 K)    |     Pub. Date: October 23, 2022
DOI: 10.54647/geosciences17214    87 Downloads     85283 Views  

Author(s)

Tangtang Zhang, Key laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Chinese Academy of Sciences, Lanzhou, China;Department of Civil and Environmental Engineering, University of California, Los Angeles, California, USA;Pingliang Land Surface Process & Severe Weather Research Station, CAS, Pingliang, Gansu, China
Mekonnen Gebremichael, Department of Civil and Environmental Engineering, University of California, Los Angeles, California, USA
Xin Ma, Key laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Chinese Academy of Sciences, Lanzhou, China
Qun Du, State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Jun Wen, Key Laboratory of Plateau Atmosphere and Environment, Sichuan Province, College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, China

Abstract
Accurate soil moisture data products are essential for implementing the food, energy, and water nexus approach. This study evaluates the accuracy of three globally available soil moisture data products, namely, (1) the satellite-based remote sensing product known as the Essential Climate Variable (ECV) which is a new product combining passive and active microwave measurements, (2) the global land surface simulation known as the Global Land Data Assimilation System (GLDAS) driven by catchment model (referred to as “GLDAS1”), and (3) GLDAS driven by Noah model (referred to as “GLDAS2”). The study region is the Tibetan Plateau in China, characterized by high-elevation plateau and cold climate. The evaluation was made by comparison against a network of in-situ soil moisture measuring stations in two contrasting climates: the Maqu region (humid, elevation range 3430 – 3750 m.a.s.l), and the Naqu region (semiarid, elevation range 4100 – 6500 m.a.s.l). Results show that the observed soil moisture fields at both sites strong seasonal cycle. Both the ECV and GLDAS2 simulations capture well the temporal dynamics in observed soil moisture fields, at both sites. In terms of actual magnitudes, both ECV and GLDAS2 reproduced the average soil moisture at the Naqu site. However, they both underestimated the soil moisture at the Maqu site by 31% and 24%, at Naqu site by 20% and less than 5%. The GLDAS1 product, on the other hand, gives a constant value, and totally fails to capture the seasonal cycle at both sites. The performances of ECV and GLDAS2 is encouraging, however, the source of the bias at the humid site needs to be investigated further. The poor performance of GLDAS1 indicates that caution must be exercised in selecting appropriate land surface models.

Keywords
Soil moisture; ECV; GLDAS; Tibetan Plateau

Cite this paper
Tangtang Zhang, Mekonnen Gebremichael, Xin Ma, Qun Du, Jun Wen, Evaluation of Global soil moisture products over the Tibetan Plateau in Humid and Semiarid Climates , SCIREA Journal of Geosciences. Volume 6, Issue 3, June 2022 | PP. 69-81. 10.54647/geosciences17214

References

[ 1 ] Koster, R.D., Dirmeyer, P.A., Guo, Z.C., Bonan, G., Chan,E., Cox P., Gordon, C.T., S. Kanae.,  Kowalczyk, E., Lawrence, D., Liu,P., Lu, C.H., Malyshev, S.,  McAvaney, B., Mitchell, K., Mocko,D., Oki,T., Oleson, K., Pitman,A., Sud,Y. C., Taylor, C.M., Verseghy, D., Vasic, R., Xue,Y.K., Yamada, T. Science.2004,305, 1138–1140.
[ 2 ] Diro, G.T., L. Sushama, A. Martynov, D.I. Jeong, D. Verseghy, and K. Winger. Land-atmosphere coupling over North America in CRCM5, J. Geophys. Res. Atmos. 2014, 119, 11,955–11,972.
[ 3 ] Bitew, M. M. , & Gebremichael, M. Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model. Water Resour. Res. 2011a, 47, wo6526.
[ 4 ] Bitew, M. M. and Gebremichael, M. Assessment of satellite rainfall products for streamflow simulation in medium watersheds of the Ethiopian highlands, Hydrol. Earth Syst. Sci.2011b, 15, 1147–1155.
[ 5 ] Bitew, M. M., Gebremichael, M., Ghebremichael, L. T., & Bayissa, Y. A. Evaluation of high-resolution satellite rainfall products through streamflow simulation in a hydrological modeling of a small mountainous watershed in Ethiopia. J. Hydrometeor. 2012, 13(1), 338-350.
[ 6 ] Fontanet, Mireia & Fernàndez-Garcia, Daniel & Ferrer, Francesc. The value of satellite remote sensing soil moisture data and the DISPATCH algorithm in irrigation fields. Hydrol. Earth Syst. Sci. 2018, 22, 5889-5900.
[ 7 ] Bi, H., Jianwen, M., Wenjun, Z., & Jiangyuan, Z. Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau. J. Geophys. Res. Atmos. 2016, 121, 2658-2678.
[ 8 ] Zhao, H., Zeng, Y., & Su Z. Analysis of soil hydraulic and thermal properties for land surface modeling over the Tibetan Plateau. Earth Syst. Sci. Data. 2018, 10, 1031-1061.
[ 9 ] Yang, K., Qin, J., Zhao, L., Chen, Y., Tang, W., Han, M., Lazhu, Chen, Z., Lv, N., Ding, B., Wu, H., & Lin, C. A Multiscale Soil Moisture and Freeze–Thaw Monitoring Network on the Third Pole. Bull. Amer. Meteor. Soc.2013, 94, 1907-1916.
[ 10 ] Su, B., Wen, J., Dente, L., van der Velde, R., Wang, L., Ma, Y., Yang, K., & Hu, Z. The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products. Hydrol. Earth Syst. Sci. 2011, 15, 2303-2316.
[ 11 ] Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., and Dorigo, W.: Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology, Earth Syst. Sci. Data. 2019, 11, 717–739.
[ 12 ] Wouter Dorigo, Wolfgang Wagner, Clement Albergel, Franziska Albrecht, Gianpaolo Balsamo, Luca Brocca, Daniel Chung, Martin Ertl, Matthias Forkel, Alexander Gruber, Eva Haas, Paul D. Hamer, Martin Hirschi, Jaakko Ikonen, Richard de Jeu, Richard Kidd, William Lahoz, Yi Y. Liu, Diego Miralles, Thomas Mistelbauer, Nadine Nicolai-Shaw, Robert Parinussa, Chiara Pratola, Christoph Reimer, Robin van der Schalie, Sonia I. Seneviratne, Tuomo Smolander, Pascal Lecomte, ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions, Remote Sens. Environ. 2017,203,185-215.
[ 13 ] Jing, W.; Song, J.; Zhao, X. A Comparison of ECV and SMOS Soil Moisture Products Based on OzNet Monitoring Network. Remote Sens. 2018, 10, 703.
[ 14 ] Rodell, M., P.R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.-J. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J.K. Entin, J.P. Walker, D. Lohmann, and D. Toll, The Global Land Data Assimilation System, Bull. Amer. Meteor. Soc. 2004, 85(3), 381-394.
[ 15 ] Entekhabi, D., Colliander, A., Chen, F., Cosh, M.H., Caldwell, T., Walker, J., Berg, A., McNairn, H., Thibeault, M., Martínez-Fernández, J., Uldall, F., Seyfried, M., Bosch, D., Starks, P., Holifield Collins, C., Prueger, J., van der Velde, R., Asanuma, J., Palecki, M., Small, E.E., Zreda, M., Calvet, J., Crow, W.T., & Kerr, Y. Development and assessment of the SMAP enhanced passive soil moisture product. Remote Sens. Environ. 2018, 204, 931-941.