ISSN: 2706-8870
Volume 6, Number 5 (2021)
Year Launched: 2016

Decoupling of cell refractive index and thickness distribution under three-wavelength phase imaging

Volume 6, Issue 5, October 2021     |     PP. 293-308      |     PDF (643 K)    |     Pub. Date: August 15, 2021
DOI: 10.54647/cm32587    79 Downloads     5171 Views  

Author(s)

Jingrong Liao, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
Yawei Wang, School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China
Shuangshuang Xue, School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China
Yujuan Sun, School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China
Wen Jiang, School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China
Yuanyuan Xu, School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China

Abstract
Decoupling of refractive index (RI) and thickness information of a cell is very importment in cell’s analysis. This paper proposes a method for decoupling the refractive index and thickness of a cell under three-wavelength phase imaging. Based on the Quantitative Phase Imaging (QPI) method, the proposed method can obtain the sample's refractive index and thickness distributions by solving three-wavelength phase equations using the approximate setting under dispersion based on the optical and optical dispersion theories. In simulation experiments, the obtained refractive index and thickness distribution results have high accuracy with a maximum error lower than 6%. The validation results show that the method can effectively decouple the refractive index and thickness for homogeneous cells and multi-media non-spherical cells. That demonstrates the method's effectiveness, making up for the shortcomings of traditional methods and playing an important role in 3D imaging of the cell’s sub-structures.

Keywords
Quantitative phase imaging; cellular substructure; three-wavelength; decoupling refractive index; thickness distribution.

Cite this paper
Jingrong Liao, Yawei Wang, Shuangshuang Xue, Yujuan Sun, Wen Jiang, Yuanyuan Xu, Decoupling of cell refractive index and thickness distribution under three-wavelength phase imaging , SCIREA Journal of Clinical Medicine. Volume 6, Issue 5, October 2021 | PP. 293-308. 10.54647/cm32587

References

[ 1 ] G. Dardikman, N.T. Shaked, Review on methods of solving the refractive index–thickness coupling problem in digital holographic microscopy of biological cells, Optics Communications. 422 (2018) 8-16. https://doi.org/10.1016/j.optcom.2017.11.084.
[ 2 ] N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan,M. S. Feld, Live cell refractometry using microfluidic devices, Opt. Lett. 31 (2006) 2759-2761. https://doi.org/10.1364/OL.31.002759.
[ 3 ] B. Kemper, S.Kosmeier, P. Langehanenberg,G. von Bally, I. Bredebusch, W. Domschke, J. Schnekenburger, Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy, J. Biomed. Opt. 12 (2007) 054009. https://doi.org/10.1117/1.2798639.
[ 4 ] P. Eaton, P. West, Atomic force microscopy, Oxford University Press, 2010.
[ 5 ] J Pawley. Handbook of biological confocal microscopy, Vol. 236, Springer Science & Business Media, 2006.
[ 6 ] C. L. Curl, C. J Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart,et al,Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy, Cytometry Part A: The Journal of the International Society for Analytical Cytology. 65 (2005) 88-92. https://doi.org/10.1002/cyto.a.20134.
[ 7 ] A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, Tomographic phase microscopy of living three-dimensional cell cultures, J. Biomed. Opt. 19 (2014) 046009. https://doi.org/10.1117/1.JBO.19.4.046009.
[ 8 ] M. Habaza, B. Gilboa, Y. Roichman, and N. T. Shaked. Tomographic phase microscopy with 180° rotation of live cells in suspension by holographic optical tweezers, Opt. Lett. 40 (2015) 1881-1884. https://doi.org/10.1364/OL.40.001881.
[ 9 ] D. Jin, R. Zhou, Z. Yaqoob, and Peter T. C. So. Tomographic phase microscopy: principles and applications in bioimaging [Invited], J. Opt.Soc. Am. B. 34 (2017) B64. https://doi.org/10.1364/JOSAB.34.000B64.
[ 10 ] G. Dardikman, Y. N. Nygate, I. Barnea, N. A. Turko, G. Singh, B. Javidi, and N. T. Shaked, Integral refractive index imaging of flowing cell nuclei using quantitative phase microscopy combined with fluorescence microscopy, Biomed. Opt. Express. 9 (2018) 1177-1189. https://doi.org/10.1364/BOE.9.001177.
[ 11 ] G. Dardikman, G. Singh, N. T. Shaked, Four dimensional phase unwrapping of dynamic objects in digital holography, Opt. Express. 26 (2018) 3772-3778. https://doi.org/10.1364/OE.26.003772.
[ 12 ] N. Cardenas, S. Mohanty, Decoupling of geometric thickness and refractive index in quantitative phase microscopy, Opt. Lett. 38 (2013) 1007-1009. https://doi.org/10.1364/OL.38.001007.
[ 13 ] B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, P. Marquet, Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer, Cytometry Part A: The Journal of the International Society for Analytical Cytology. 73 (2008) 895-903. https://doi.org/10.1002/cyto.a.20605.
[ 14 ] B. Rappaz, F. Charrière, C. Depeursinge, P. J. Magistretti, P. Marquet, Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium, Opt. Lett. 33 (2008) 744-746. https://doi.org/10.1364/OL.33.000744.
[ 15 ] B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy, Opt. Express. 13 (2005) 9361-9373. https://doi.org/10.1364/OPEX.13.009361.
[ 16 ] D. Boss, J. Kühn, P. Jourdain, C. D. Depeursinge, P. J. Magistretti, P.P. Marquet M.D, Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy, J. Biomed. Opt. 18 (2013) 036007. https://doi.org/10.1117/1.JBO.18.3.036007.
[ 17 ] M. R. Jafarfard, S. Moon, B. Tayebi, D. Y. Kim, Dual-wavelength diffraction phase microscopy for simultaneous measurement of refractive index and thickness, Opt. Lett. 39 (2014) 2908-2911. https://doi.org/10.1364/OL.39.002908.
[ 18 ] Z. D. Xin, Y. Y. Xu, Y. Ji, W. F. Jin, H. R. Zheng, L. Zhang, Y. W. Wang, The homogeneous and dual-medium cell’s refractive index decoupling method and entropy tomographic imaging, High Power Lasers, High Energy Lasers, and Silicon-Based Photonic Integration. 101520T (2016). https://doi.org/10.1117/12.2246701.
[ 19 ] Guangwei Peng, Research on Refractive Index Decoupling Method of Multimedia Cells Based on Quantitative Phase Micromorphology Reconstruction, Jiangsu University, 2020. https://doi.org/10.27170/d.cnki.gjsuu.2020.002058.